66 research outputs found

    Optimal strain sensors placement to analyze the modal parameters of the sorting arm

    Get PDF
    The dynamics of light cantilever structure are complex under high-frequency reciprocating motion, and they cannot be obtained through simulation analysis. Therefore, it is necessary to use experimental analysis methods to study. At present, the main experimental method is to collect the vibration response of the sensors on the structure and then to analyze the dynamics. However, for light cantilever structure, the additional mass of the sensors changes the dynamics of the structure significantly, resulting in large errors in the results. The paper takes the sorting arm of LED chip sorting machine as the research object. An on-line identification of vibration experiment is carried out to obtain the dynamics of sorting arm with using of strain gauges, which avoided the error of the attached mass of the sensors. In addition, the result of experimental comparison verifies that using the strain gages can measure each mode of the arm structure more accurately. The method provides the guiding principle and basis for the dynamic optimization of the sorting arm mechanism

    Research on dynamics of sorting arms with high frequency reciprocating motion

    Get PDF
    The characters of high frequency reciprocating equipment are quick starting and stopping, short range, high frequency and multi-freedom reciprocating motion. The inertia introduced by the high frequency reciprocating motion of a LED chip sorter has complicated effects on the positional accuracy. It is necessary to obtain dynamics of the sorting arm to suppress the vibration of the high frequency operation. The positioning precision and positioning time are affected by the natural vibration of the sorting arm by analyzing the displacement response. The paper verifies that the inherent vibration of the sorting arm has a crucial effect on its positioning precision and positioning time. Under static condition, due to the additional mass of the accelerometers, the research results show that there is no obvious difference in the experimental modal analysis (EMA) based on multi-type sensors. The modal parameters identified by accelerometers and strain gauges are very close. The modal parameters are obtained through the modal analysis method, which combines the strain modal analysis and operational modal analysis (OMA), under high frequency reciprocating motion. The paper verifies that the modal parameters of lightweight structure are very different in the static and operation. The key points of each mode are found by analyzing the modal amplitudes at different speeds which provide the guiding principle and basis for the dynamic optimization of the sorting arm mechanism

    Research on vibration suppression mode of sorting arm structure in high-frequency reciprocating motion

    Get PDF
    The sorting arm structure is under the inertia impact of high frequency reciprocating motion. The vibration characteristics are related to the operation process so that the precision of the chip sorting is uncertain. Thus, the accuracy of chips and efficiency of LED sorting machine are reduced. In the paper, the relationship between the vibration of the sorting arm and the positioning error of the chip has been studied. Besides, the correlation between the sorting arm structure’s vibration and the working precision of the separator are pointed out. The operation control is optimized based on the dynamics of the sorting arm and the operation parameters are optimized based on time sequence setting, in order to shorten the vibration attenuation time of the sorting arm for suppress vibration and provide efficiency. The incentives, which are introduced by variable structure and by the operation, can be effectively controlled. The array accuracy of chips and working efficiency of chip sorting machine are improved

    Examining associations of folic acid supplements administered to mothers during pre-conceptional and prenatal periods with autism spectrum disorders in their offspring: insights from a multi-center study in China

    Get PDF
    ObjectiveTo investigate the relationship between maternal folic acid (FA) supplementation during the pre-conceptional and prenatal periods and the subsequent risk of autism spectrum disorder (ASD) in offspring.MethodsA total of 6,049 toddlers aged 16–30 months were recruited from August 2016 to March 2017 for this cross-sectional study conducted in China. The parents of the enrolled toddlers provided information on maternal supplemental FA, socio-demographic information, and related covariates. Standard diagnostic procedures were implemented to identify toddlers with ASD.ResultsAmong the 6,049 children included in the study, consisting of 3,364 boys with an average age of 22.7 ± 4.1 months, a total of 71 children (1.2%) were diagnosed with ASD. Mothers who did not consume FA supplements during the prenatal period were found to have a significantly increased risk of having offspring with ASD, in comparison to those who were exposed to FA supplements (odds ratio [OR] = 2.47). However, we did not find a similar association during the pre-conceptional period. Compared to mothers who consistently used FA supplements from pre-conception to the prenatal period, those who never used FA supplements were statistically significantly associated with a higher risk of ASD in their offspring (OR = 2.88).ConclusionThis study indicated that providing continuous maternal FA supplementation during the pre-conceptional and prenatal periods may decrease the risk of ASD in offspring. The prenatal period is considered to be the most crucial time for intervention

    Altered Negative Unconscious Processing in Major Depressive Disorder: An Exploratory Neuropsychological Study

    Get PDF
    Major depressive disorder (MDD) has been characterized by abnormalities in emotional processing. However, what remains unclear is whether MDD also shows deficits in the unconscious processing of either positive or negative emotions. We conducted a psychological study in healthy and MDD subjects to investigate unconscious emotion processing and its valence-specific alterations in MDD patients.We combined a well established paradigm for unconscious visual processing, the continuous flash suppression, with positive and negative emotional valences to detect the attentional preference evoked by the invisible emotional facial expressions.Healthy subjects showed an attentional bias for negative emotions in the unconscious condition while this valence bias remained absent in MDD patients. In contrast, this attentional bias diminished in the conscious condition for both healthy subjects and MDD.Our findings demonstrate for the first time valence-specific deficits specifically in the unconscious processing of emotions in MDD; this may have major implications for subsequent neurobiological investigations as well as for clinical diagnosis and therapy

    Robust and Task-Independent Spatial Profile of the Visual Word Form Activation in Fusiform Cortex

    Get PDF
    Written language represents a special category of visual information. There is strong evidence for the existence of a cortical region in ventral occipitotemporal cortex for processing the visual form of written words. However, due to inconsistent findings obtained with different tasks, the level of specialization and selectivity of this so called visual word form area (VWFA) remains debated. In this study, we examined category selectivity for Chinese characters, a non-alphabetic script, in native Chinese readers. In contrast to traditional approaches of examining response levels in a restricted predefined region of interest (ROI), a detailed distribution of the BOLD signal across the mid-fusiform cortical surface and the spatial patterns of responses to Chinese characters were obtained. Results show that a region tuned for Chinese characters could be consistently found in the lateral part of the left fusiform gyrus in Chinese readers, and this spatial pattern of selectivity for written words was not influenced by top-down tasks such as phonological or semantic modulations. These results provide strong support for the robust spatial coding of category selective response in the mid-fusiform cortex, and demonstrate the utility of the spatial distribution analysis as a more meaningful approach to examine functional magnetic resonance imaging (fMRI) data

    Chinese and Korean Characters Engage the Same Visual Word Form Area in Proficient Early Chinese-Korean Bilinguals

    Get PDF
    A number of recent studies consistently show an area, known as the visual word form area (VWFA), in the left fusiform gyrus that is selectively responsive for visual words in alphabetic scripts as well as in logographic scripts, such as Chinese characters. However, given the large difference between Chinese characters and alphabetic scripts in terms of their orthographic rules, it is not clear at a fine spatial scale, whether Chinese characters engage the same VWFA in the occipito-temporal cortex as alphabetic scripts. We specifically compared Chinese with Korean script, with Korean script serving as a good example of alphabetic writing system, but matched to Chinese in the overall square shape. Sixteen proficient early Chinese-Korean bilinguals took part in the fMRI experiment. Four types of stimuli (Chinese characters, Korean characters, line drawings and unfamiliar Chinese faces) were presented in a block-design paradigm. By contrasting characters (Chinese or Korean) to faces, presumed VWFAs could be identified for both Chinese and Korean characters in the left occipito-temporal sulcus in each subject. The location of peak response point in these two VWFAs were essentially the same. Further analysis revealed a substantial overlap between the VWFA identified for Chinese and that for Korean. At the group level, there was no significant difference in amplitude of response to Chinese and Korean characters. Spatial patterns of response to Chinese and Korean are similar. In addition to confirming that there is an area in the left occipito-temporal cortex that selectively responds to scripts in both Korean and Chinese in early Chinese-Korean bilinguals, our results show that these two scripts engage essentially the same VWFA, even at the level of fine spatial patterns of activation across voxels. These results suggest that similar populations of neurons are engaged in processing the different scripts within the same VWFA in early bilinguals

    Structural Modifications of the Brain in Acclimatization to High-Altitude

    Get PDF
    Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA

    Prediction of PM2.5 Concentration Based on the LSTM-TSLightGBM Variable Weight Combination Model

    No full text
    PM2.5 is one of the main pollutants that cause air pollution, and high concentrations of PM2.5 seriously threaten human health. Therefore, an accurate prediction of PM2.5 concentration has great practical significance for air quality detection, air pollution restoration, and human health. This paper uses the historical air quality concentration data and meteorological data of the Beijing Olympic Sports Center as the research object. This paper establishes a long short-term memory (LSTM) model with a time window size of 12, establishes a T-shape light gradient boosting machine (TSLightGBM) model that uses all information in the time window as the next period of prediction input, and establishes a LSTM-TSLightGBM model pair based on an optimal weighted combination method. PM2.5 hourly concentration is predicted. The prediction results on the test set show that the mean squared error (MAE), root mean squared error (RMSE), and symmetric mean absolute percentage error (SMAPE) of the LSTM-TSLightGBM model are 11.873, 22.516, and 19.540%, respectively. Compared with LSTM, TSLightGBM, the recurrent neural network (RNN), and other models, the LSTM-TSLightGBM model has a lower MAE, RMSE, and SMAPE, and higher prediction accuracy for PM2.5 and better goodness-of-fit
    corecore